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In this paper we show how to divide data D into n 
pieces in such a way that D is easily reconstructable 
from any k pieces, but even complete knowledge of  
k - 1 pieces reveals absolutely no information about D. 
This technique enables the construction of robust key 
management schemes for cryptographic systems that 
can function securely and reliably even when misfor- 
tunes destroy half the pieces and security breaches ex- 
pose all but one of  the remaining pieces. 
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1. Introduction 

In [4], Liu considers the following problem: 

Eleven scientists are working on a secret project. They wish to lock 
up the documents in a cabinet so that the cabinet can be opened if 
and only if six or more of the scientists are present. What is the 
smallest number of locks needed? What is the smallest number of 
keys to the locks each scientist must carry? 

It is not hard to show that the minimal solution uses 462 
locks and 252 keys per scientist. These numbers are 
clearly impractical, and they become exponentially 
worse when the number of  scientists increases. 

In this paper we generalize the problem to one in 
which the secret is some data D (e.g., the safe combina- 
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tion) and in which nonmechanical solutions (which 
manipulate this data) are also allowed. Our goa ! is to 
divide D into n pieces D, . . . . .  D n in such a way that: 

(1) knowledge of any k or more D i pieces makes D 
easily computable;  

(2) knowledge of any k -  1 or fewer Di pieces leaves D 
completely undetermined (in the sense that all its 
possible values are equally likely). 

Such a scheme is called a (k, n) threshold scheme. 
Efficient threshold schemes can be very helpful in the 

management  of  cryptographic keys. In order to protect 
data we can encrypt it, but in order to protect the encryp- 
tion key we need a different method (further encryptions 
change the problem rather than solve it). The most  
secure key management  scheme keeps the key in a single, 
well-guarded location (a computer ,  a human brain, or a 
safe). This scheme is highly unreliable since a single 
misfortune (a computer  breakdown,  sudden death, or 
sabotage) can make the information inaccessible. An ob- 
vious solution is to store multiple copies of  the key at dif- 
ferent locations, but this increases the danger of  security 
breaches (computer penetration~ betrayal, or human er- 
rors). By using a (k, n) threshold scheme with n = 2 k -  1 
we get a very robust key management  scheme: We can 
recover the original key even when [n/2J = k -  1 of  the n 
pieces are destroyed, but our opponents  cannot  
reconstruct the key even when security breaches expose 
[n/21 = k -  1 of  the remaining k pieces. 

In other applications the t radeoff  is not between 
secrecy and reliability, but between safety and conve- 
nience of use. Consider, for example, a company that 
digitally signs all its checks (see RSA [5]). I f  each ex- 
ecutive is given a copy of the company ' s  secret signature 
key, the system is convenient but easy to misuse. I f  the 
cooperation of  all the company ' s  executives is necessary 
in order to sign each check, the system is safe but in- 
convenient. The standard solution requires at least three 
signatures per check, and it is easy to implement with a 
(3, n) threshold scheme. Each executive is given a small 
magnetic card with one Di piece, and the company ' s  
signature generating device accepts any three of  them in 
order to generate (and later destroy) a temporary  copy of  
the actual signature key D. The device does not contain 
any secret information and thus it need not be protected 
against inspection. An unfaithful executive must have at 
least two accomplices in order to forge the company ' s  
signature in this scheme. 

Threshold schemes are ideally suited to applications in 
which a group of  mutually suspicious individuals with 
conflicting interests must cooperate.  Ideally we would 
like the cooperation to be based on mutual consent, but 
the veto power this mechanism gives to each member  can 
paralyze the activities of  the group. By properly choos- 
ing the k and n parameters  we can give any sufficiently 
large majori ty the authority to take some action while 
giving any sufficiently large minority the power to block 
it. 
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2. A Simple (k, n) Threshold Scheme 

Our scheme is based on polynomial '  interpolation: 
given k points in the 2-dimensional plane (x,, y,) . . . . .  
(xk, Yk). with distinct xi's , there is one and only one 
polynomial  q(x) of  degree k - 1 such that q(x) =yi  for all 
i. Without loss of  generality, we can assume that the data 
D is (or can be made) a number.  To divide it into pieces 
D~, we pick a random k - 1  degree polynomial 
q ( x ) = a o + a l x +  . . .  ak_ixk-~ in which a o = D  , and 
evaluate: 

D~ = q(1) . . . . .  D i = q(i) . . . . .  D n = q(n). 

Given any subset of  k of  these D~ values (together with 
their identifying indices), we can find the coefficients of  
q(x) by interpolation, and then evaluate D=q(O) .  
Knowledge of  just k -  1 of  these values, on the other 
hand, does not  suffice in order to calculate D. 

To make this claim more precise, we use modular  
arithmetic instead of  real arithmetic. The set of  integers 
modulo a prime number p forms a field in which inter- 
polation is possible. Given an integer valued data D, we 
pick a prime p which is bigger than both D and n. The 
coefficients a~ . . . . .  ak_~ in q(x) are randomly chosen 
from a uniform distribution over the integers in [0, p), 
and the values D~ . . . . .  Dn are computed modulo p. 

Let us now assume that k - 1  of these n pieces are 
revealed to an opponent.  For each candidate value D '  in 
[0, p) he can construct one and only one polynomial 
q '(x) of  degree k -  1 such that q '(0) = D '  and q '(0 =D~ 
for the k -  1 given arguments.  By construction, these p 
possible polynomials are equally likely, and thus there is 
abolutely nothing the opponent  can deduce about the 
real value of  D. 

Efficient O(n log 2 n) algorithms for polynomial evalu- 
ation and interpolation are discussed in [1] and [3], but 
even the straightforward quadratic algorithms are fast 
enough for practical key management  schemes. I f  the 
number  D is long, it is advisable to break it into shorter 
blocks of  bits (which are handled separately) in order to 
avoid multiprecision arithmetic operations. The blocks 
cannot be arbitrarily short, since the smallest usable 
value of  p is n + 1 (there must be at least n + 1 distinct 
arguments in [0, p) to evaluate q(x) at). However,  this is 
not a severe limitation since sixteen bit modulus (which 
can be handled by a cheap sixteen bit arithmetic unit) 
suffices for applications with up to 64,000 D~ pieces. 

Some of the useful properties of  this (k, n) threshold 
scheme (when compared to the mechanical locks and 
keys solutions) are: 

(1) The size of  each piece does not exceed the size of  the 
original data. 

(2) When k is kept fixed, D~ pieces can be dynamically 
added or deleted (e.g., when executives join or leave 

the company) without affecting the other D i pieces. 
(A piece is deleted only when a leaving executive 
makes it completely inaccessible, even to himself.) 

(3) It is easy to change the D i pieces without changing 
the original data D - - a l l  we need is a new polynomial 
q(x) with the same free term. A frequent change of 
this type can greatly enhance security since the pieces 
exposed by security breaches cannot be accumulated 
unless all of  them are values of  the same edition of 
the q(x) polynomial.  

(4) By using tuples of  polynomial values as Di pieces, we 
can get a hierarchical scheme in which the number  of  
pieces needed to determine D depends on their im- 
portance. For example, if we give the company ' s  
president three values of  q(x),  each vice-president 
two values of  q(x),  and each executive one value of  
q(x),  then a (3, n) threshold scheme enables checks to 
be signed either by any three executives, or by any 
two executives one of  whom is a vice-president, or by 
the president alone. 

A different (and somewhat less efficient) threshold 
scheme was recently developed by G.R.  Blakley [2]. 
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LThe polynomials can be replaced by any other collection of func- 
tions which are easy to evaluate and to interpolate. 
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