
Bit Commitment Using Pseudo-Randomness �Moni NaorIBM Almaden Research Center650 Harry RoadSan-Jose CA 95120February 25, 2001AbstractWe show how a pseudo-random generator can provide a bit commitmentprotocol. We also analyze the number of bits communicated when partiescommit to many bits simultaneously, and show that the assumption of theexistence of pseudo-random generators su�ces to assure amortized O(1) bits ofcommunication per bit commitment.1 IntroductionA bit commitment protocol is a basic component of many cryptographic protocols.One party, Alice, commits to the other party, Bob, to a bit b, in such a way that Bobhas no idea what b is. At a later stage Alice can reveal the bit b and Bob can verifythat this is indeed the value to which Alice committed. A good way to think about itis as if Alice writes the bit and puts it in a locked box to which only she has the key.She gives the box to Bob (the commit stage) and when the time is ripe, she opensit. Bob knows that the contents were not tampered with, since the box was at hispossession.Bit commitment has been used for zero knowledge protocols [GMW1], [BCC],identi�cation schemes [FS], Multi party protocols [GMW2], [CDG], and can imple-ment Blum's coin ipping over the phone [B].�Part of this work done while author was at UC Berkeley. Research supported by NSF grantCCR 88 - 13632 1

A current research program in cryptography is to base the security on as gen-eral assumptions as possible. Past successes of the program had been in establishingvarious primitives on the existence of one-way functions or permutations or on theexistence of trapdoor functions. The most general (computational complexity) as-sumption under which bit commitment was known to be possible is that one waypermutations exist [GMW1]. In this paper we show that given any pseudo-randomgenerator, a bit commitment protocol can be constructed. This is a weaker condition,since Yao [Yao] has shown that pseudo-random generators can be based on one-waypermutations. A pseudo-random generator is a function that maps a string (theseed) to a longer one, such that if the seed is chosen at random, then the output isindistinguishable from a truly random distribution for all polynomial time machines.Very recently, Impagliazzo, Levin and Luby [ILL] have shown that given any oneway function (not necessary a permutation), a pseudo-random generator can be con-structed (under non-uniform assumptions) and Hastad [H] has shown the same underuniform assumptions. On the other hand, Impagliazzo and Luby [IL] have arguedthat the existence of one-way functions is a prerequisite for any protocol that mustrely on computational complexity. Thus we can conclude that if any computationalcomplexity based cryptography is possible, then bit commitment protocols exist, andso do the protocols that rely on bit commitment, such as zero-knowledge proofs andidenti�cation schemes.What is the communication complexity of a bit commitment protocol (i.e. howmany bits must be transferred during the execution of the protocol)? It cannot bethe case that only a �xed number of bits will be exchanged during the executionof the protocol, otherwise after the commit stage Bob can guess with non negligibleprobability what Alice would send in the revealing stage, and can verify that the guessis consistent with what she sent so far and deduce the value of the bit. However, inmany applications Alice wants to commit to a collection of bits b1; b2; : : : bm and theyare to be revealed at the same time. These applications include coin ipping over thephone and zero-knowledge protocols such as Impagliazzo and Yung [IY]. Furthermore,Kilian, Micali and Ostrovsky [KMO] have shown that many of the known protocolsfor zero knowledge can be converted to ones that have this property. Therefore it isdesirable to amortize the communication complexity of bit commitment. We showthat if m is large enough, at least linear in the security parameter n, then Alice cancommit to b1; b2; : : : bm while exchanging only O(1) bits per bit commitment. Thetotal computational complexity of the protocol is the same as the complexity of the2

protocol for committing to one bit.In the next section we give formal de�nitions of the problem and the assumptions.In Section 3 we show how the commit can be implemented using a pseudo-randomgenerator. Section 4 shows how to get the amortized communication complexity downto O(1) per bit.2 De�nitionsA bit commitment protocol consists of two stages:� The commit stage: Alice has a bit b to which she wishes to commit to Bob. Sheand Bob exchange messages. At the end of the stage Bob has some informationthat represents b.� The revealing stage: at the end of which Bob knows b.The protocol must obey the following: for all probabilistic polynomial time Bobs,for all polynomials p and for large enough security parameter n1. After the commit stage Bob cannot guess b with probability greater than 12+ 1p(n) .2. Alice can reveal only one possible value. If she tries to reveal a di�erent valueshe is caught with probability at least 1� 1p(n) .In de�ning the properties a bit commitment protocol must obey, we have assumeda scenario where Bob cannot guess b with probability greater than 12 prior to theexecution of the commit protocol. In the more general case, Bob has some auxiliaryinput that might allow him to guess b with probability q > 12 . The de�nition for thiscase is that as a result the commit stage the advantage that Bob gains in guessing bis less than 1p(n) . All the results of this paper hold for the general case.A commitment to many bits protocol consists of two stages:� The commit stage: Alice has a sequence of bits D = b1; b2; : : : bm to which shewishes to commit to Bob. She and Bob exchange messages. At the end of thestage Bob has some information that represents D.� The revealing stage: at the end of which Bob knows D.The protocol must obey the following: for all probabilistic polynomial time Bobs,for all polynomials p and for large enough security parameter n3

1. for any two sequences D = b1; b2; : : : ; bm and D0 = b01; b02; : : : ; b0m selected by Bob,following the commit stage Bob cannot guess whether D or D0 was committedwith probability greater than 12 + 1p(n) .2. Alice can reveal only one possible sequence of bits. If she tries to reveal adi�erent sequence of bits, then she is caught with probability at least 1� 1p(n) .Pseudo-Random GeneratorsLet m(n) be some function such that m(n) > n.G : f0; 1gn 7! f0; 1gm(n) is a a pseudo-random generator if for all polynomials p andall probabilistic polynomial time machines A that attempt to distinguish betweenoutputs of the generator and truly random sequences, except for �nitely many n's:jPr[A(y) = 1]� Pr[A(G(s)) = 1]j < 1p(n)where the probabilities are taken over y 2 f0; 1gm(n) and s 2 f0; 1gn chosen uniformlyat random.Remark: We could have de�ned pseudo-random generators relative to polynomialsized circuits. The results in this paper would change appropriately, i.e. the bitcommitment protocol will be secure against polynomial sized circuits.It is known that if pseudo-random generators exist for any m(n) > n, then theyexists for all m polynomial in n [GGM]. We can treat the pseudo-random generatoras outputting a sequence of unspeci�ed length, of which we can examine only a �xedpre�x (whose length is polynomial in n, the seed length).In the rest of the paper we will assume some pseudo-random generator G. Letn be a security parameter which is assumed to have been chosen so that no feasiblemachine can break the pseudo-random generator for seeds of length n. We will useGl(s) to denote the �rst l bits of the pseudo-random sequence on seed s 2 f0; 1gn.Bi(s) will be used to denote the ith bit of the pseudo-random sequence on seed s.3 The Bit CommitmentPseudo-random sequences have the unpredictability of the next bit property: giventhe �rst m bits of a pseudo-random sequence, any polynomial time algorithm thattries to predict the next bit in the sequence has probability smaller than 12 + 1p(n) tosucceed for any polynomial p(n). (In fact, Blum and Micali [BM] used this property4

to de�ne pseudo-randomness and Yao [Yao] has shown that the two de�nitions areequivalent.) It is natural to try to apply this property to achieve bit commitment.As a �rst attempt, consider the following protocol:� Commit stage - Alice selects seed s 2 f0; 1gn and sends Gm(s) and Bm+1(s)� b.(b is the bit Alice is committed to.)� Reveal stage - Alice sends s, Bob veri�es that Gm(s) is what Alice sent himbefore and computes b = Bm+1(s)� (Bm+1(s)� b)This protocol has the property that Bob cannot guess the bit that Alice commitsto before the revealing stage, except with probability smaller than 12 + 1poly(n) , becausehe does not have the power to predict the pseudo-random sequence. On the otherhand, Alice might be able to cheat: if she �nds two seeds s1 and s2 such that Gm(s1) =Gm(s2), but Bm+1(s1) 6= Bm+1(s2), then she can reveal any bit she wishes (by sendings1 or s2). There is nothing in the de�nition of pseudo-random generators that forbidsthe existence of such pairs. Furthermore, given any pseudo-random generator G, onecan construct another pseudo-random generator G0 that has such pairs.There is no way to force Alice to stick to one seed, since there may be two seedsthat yield the same sequence. However, what the following protocol does is to forceAlice to stick to the same pseudo-random sequence, or she will be caught with highprobability.Bit Commitment Protocol� Commit stage -1. Bob selects a random vector ~R = (r1; r2; : : : r3n) where ri 2 f0; 1g for1 � i � 3n and sends it to Alice.2. Alice selects a seed s 2 f0; 1gn and sends to Bob the vector ~D = (d1; d2; : : : d3n)where di = 8<: Bi(s) if ri = 0Bi(s)� b if ri = 1� Reveal stage - Alice sends s and Bob veri�es that for all 1 � i � 3n, if ri = 0then di = Bi(s), and if ri = 1 then ci = Bi(s)� b.This protocol maintains the property that Bob learns nothing about the bit b,otherwise we claim that Bob has the power to distinguish between outputs of the5

pseudo-random generator and truly random strings: if Alice had chosen a truly ran-dom sequence instead of a pseudo-random sequence, then Bob would not have learnedanything about b, since all vectors ~D are equally likely, no matter what b is. (Thisis still true even in the general case where Bob has some auxiliary input that allowshim to guess b with probability q > 1=2.) If there exists a probabilistic polynomialtime Bob (call him Bob0) that can learn something about b when Alice uses a pseudo-random sequence, then Bob0 can be used to construct a distinguisher between outputsof G and truly random sequences. Given a sequence x, run the commit stage of theprotocol with Alice and Bob0, where Alice commits to a random b and instead of acreating a pseudo-random sequence uses x. Let Bob0 guess b. If he guesses correctlydecide that x is pseudo-random, otherwise decide that x is truly random. The dif-ference in the probability of deciding that the sequence is pseudo-random between arandom sequence and a pseudo-random sequence is equal to the advantage Bob0 hasof guessing b in case x is a pseudo-random sequence.How can Alice cheat? Her only chance to cheat is if there exist two seeds s1 ands2 such that G3n(s1) and G3n(s2) agree in all positions i where ri = 0, and totallydisagree in all positions i where ri = 1. We say that such a pair fools ~R.Claim 3.1 The Probability that there exists a pair of seeds s1 and s2 that fools ~R isat most 2�n, where the probability is taken over the choices of ~R.Proof: If a pair s1; s2 fools ~R, then we know that ri = Bi(s1)� Bi(s2). Therefore, apair s1 and s2 fools exactly one ~R. There are 22n pairs of seeds and 23n vectors ~R.Hence the probability that there exists a pair that can fool the ~R that Bob chose isat most 22n23n = 2�n. 2We can summarize byTheorem 3.1 If G is a pseudo-random generator, then the bit commitment protocolpresented obeys the following: For all polynomials p and for large enough securityparameter n1. Folllowing the commit stage, no probabilistic polynomial time Bob can guess bwith probability greater than 12 + 1p(n)2. Alice can reveal only one possible bit, except with probability less than 2�n
6

4 E�cient Commit to Many BitsThe protocol given in the previous section has communication cost of O(n) bits. IfAlice wants to commit to many bits b1; b2; : : : bm which she will reveal simultaneously,then she can do better. The idea is to use many bits to force Alice to stick to onepseudo-random sequence and use that sequence to commit to many bits.Suppose we implement a protocol similar to the one in the previous section, butinstead of Bob requesting to see part of the pseudo-random sequence Xored with b,Bob asks to see its bit-wise Xor with b1; b2; : : : bm. (We assume here that m = 32n andthat ~R contains exactly 32n 1's.) Alice might be able to alter one of the bi's, since itis enough that there exists a pair of seeds that agree on all the bits but one.We will prevent this from happening by using error correcting codes with largedistance between code words. Let C � f0; 1gq be a code of 2m words such that thehamming distance between any c1; c2 2 C is at least � � q. We will also require thatthere will be an e�ciently computable function E : f0; 1gm 7! f0; 1gq for mappingwords in f0; 1gm to C.What are the requirement from the code? As we shall see, q � log 22�� must be atleast 3n, and we want q=m to be a �xed constant. Such codes exist, and speci�callythe Justesen code is a constructive example [Ju] . For the amortization to work itsu�cient that m be linear in n.For a vector ~R = (r1; r2; : : : rk) with ri 2 f0; 1g and with exactly q indices i suchthat ri = 1 let G~R(s) denote the vector ~A = (a1; a2; : : : aq) where ai = Bj(i)(s) andj(i) is the index of the ith 1 in ~R. If e1; e2 2 f0; 1gq, then e1 � e2 denotes the bitwiseXor of e1 and e2.Commit to Many Bits ProtocolAlice commits to b1; b2; : : : bm.� Commit stage -1. Bob selects a random vector ~R = (r1; r2; : : : r2q) where ri 2 f0; 1g for1 � i � 2q and exactly q of the ri's are 1 and sends it to Alice2. Alice computes c = E(b1; b2; : : : bm). Alice select a seed s 2 f0; 1gn andsends to Bob e = c�G~R(s) (the bitwise Xor of G~R(s) and c), and for each1 � i � 2q such that ri = 0 she sends Bi(s).� Reveal stage - Alice sends s and b1; b2; : : : bm. Bob veri�es that for all 1 � i � 2qsuch that ri = 0 Alice had sent the correct Bi(s), computes c = E(b1; b2; : : : bm)7

and G~R(s) and veri�es that e = c�G~R(s)As in the previous section, Bob can learn nothing about any of the bi's:Claim 4.1 For any two di�erent sequences D = b1; b2; : : : bm and D0 = b01; b0; : : : ; b0mthat Bob selects, for any polynomial p, following the commit stage Bob cannot decidewith probability greater than 12 + 1p(n) to which sequence Alice has committedProof: If instead of a pseudo-random sequence Alice uses a truly random sequence,then the distribution that Bob sees is identical no matter what sequence of bits isbeing committed to. Thus if he can �nd two sequences of bits D and D0 for which hecan distinguish between D and D0, then he has a distinguisher to the pseudo-randomgenerator. 2How can Alice cheat? She can cheat if there exists a pair of seeds s1 ands2 that agree on all the indices that ~R has a 0, and there exist two di�erent se-quences b1; b2; : : : bm and b01; b02; : : : b0m such that G~R(s1)�E(b1; b2; : : : bm) = G~R(s2)�E(b01; b02; : : : b0m). We will say that s1 and s2 fool ~R in this case.Claim 4.2 For any pair of seeds s1 and s2, the probability that it fools ~R is at most(1� �2)q, where the probability is taken over the choices of ~R.Proof: If s1 and s2 can fool any ~R, then the hamming distance between G2q(s1) andG2q(s2) must be at least �q, since G~R(s1)�e = c1 and G~R(s2)�e = c2 for two di�erentcode words c1 and c2 whose distance is at least �q. Therefore, the probability that theindices i for which ri = 0 will hit only the indices where G2q(s1) and G2q(s2) agree isat most (2q��q2q)q = (1� �2)q.2If (1� �2)q < 2�3n, i.e. q � log 22�� > 3n, then for at most 2�n of the vectors~R 2 f0; 1g2q there is a pair of seeds s1 and s2 that fools ~R. Therefore, the probabilitythat Alice can alter any bit without being caught is at most 2�n.The number of bits exchanged in the protocol is O(q), and when amortized overm bits it is O(q=m) which is O(1), since C is a good code. The dominant factor inthe computational complexity of the protocol is that of G. Alice has to produce apseudo-random sequence of length 2q which is O(n). This is similar to the complexityof the commitment to a single bit.We can summarize byTheorem 4.1 If G is a pseudo-random generator, then the many bit commitmentprotocol presented obeys the following: for all probabilistic polynomial time Bobs, forall polynomials p and for large enough security parameter n8

1. For any two di�erent sequences D = b1; b2; : : : bm and D0 = b01; b0; : : : ; b0m thatBob selects, for any polynomial p, following the commit stage Bob cannot decidewith probability greater than 12 + 1p(n) to which sequence Alice has committed.2. Alice can reveal only one possible sequence of bits, except with probability lessthan 2�n3. For m > n, the communication cost is O(m).2 Joe Kilian (private communication) has suggested a di�erent method for amor-tizing the communication complexity: commit to a seed s by committing to eachof its bits separately and then commit to b1; b2 : : : bm by providing its Xor with thepseudo-random sequence generated by s. However, in this method the amortizationstarts only when m is at least n2.5 ConclusionsWe have shown how to construct bit commitment protocols from pseudo-randomgenerators and have shown how bit commitment to many bits can be implementedvery e�ciently. Thus, various Zero-Knowledge protocols can be implemented withlow complexity under the sole assumption. that one-way functions exist.In both protocols we have presented, Bob selects a random ~R, and we have arguedthat almost all the ~R's are good. Therefore if there is a trusted party at some pointin time (say the protocol designer), it can choose ~R and the same ~R will be used inall executions of the protocol.References[B] M. Blum, Coin Flipping by Telephone, Proc. 24th IEEE Compcon, 1982,pp. 133-137.[BM] M. Blum, S. Micali How to Generate Cryptographically Strong Sequences ofPseudo-Random Bits, Siam Journal on Computing 13 (1984), pp 850-864.[BCC] G. Brassard, D. Chaum, C. Cr�epeau, Minimum Disclosure Proofs of Knowl-edge, Journal of Computer and System Sciences 37 (1988), pp. 156-189.9

[CDG] D. Chaum, I. Damg�ard and J. van de Graaf, Multiparty Computations En-suring Secrecy of each Party's Input and Correctness of the Output, Proc.of Crypto 87, pp. 462.[FS] A. Fiat and A. Shamir, How to prove yourself, Proc. of Crypto 86, pp.641-654.[GGM] O. Goldreich, S. Goldwasser and M. Micali, How to construct random func-tions, Journal of the ACM 33 (1986), pp. 792-807.[GMW1] O. Goldreich, M. Micali, A. Wigderson, Proofs that yield nothing but theirvalidity and a methodology of cryptographic protocol design, Proc. 27th Sym-posium on Foundations of Computer Science, 1986, pp 174-187.[GMW2] O. Goldreich, M. Micali, A. Wigderson, How to play any mental game, Proc.19th Symposium on Theory of Computing, 1987, pp. 218-229.[H] J. Hastad, Pseudo-random generators under uniform assumpsions, Proc.22nd Symposium on Theory of Computing, 1987, to appear.[IL] I. Impagliazzo and M. Luby, One-way functions are essential to computa-tional based cryptography, Proc. 21st Symposium on Theory of Computing,1989, pp. 230-235.[ILL] I. Impagliazzo, L. Levin and M. Luby, Pseudo-random generation from one-way functions, Proc. 21st Symposium on Theory of Computing, 1989, pp.12-24.[IY] R. Impagliazzo and M. Yung, Direct Zero-Knowledge Protocols, Crypto 87,pp. 40-51.[Ju] J. Justesen, A class of constructive asymptotically good algebraic codes ,IEEE Transactions on Information Theory 18 (1972), pp. 652-656.[KMO] J. Kilian, S. Micali and R. Ostrovsky, Simple non-interactive zero-knowledgeproofs, Crypto 89.[Yao] A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. 23rd Sym-posium on Foundations of Computer Science, 1982, pp 80-91.10

