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Abstract

In this paper, we extend our modification of the Wilcox
waveform approximation technique [8] to the case of prolate
spheroidal wave functions. We have previously carried out a
corresponding analysis in the case of Hermite waveforms [3,
4].

1 Introduction

In [8], Wilcox introduced a general method using Hilbert space
technique, for finding a waveform whose ambiguity function is
a good approximation over all ofR2 to a specified function. In
previous papers [3, 4] we have adapted Wilcox’s method to the
problem of producing a close match, over a specified subre-
gion of R2, to a good ambiguity surface, and taking a specific
orthonormal basis (Hermite waveforms) as the starting point.

The optimization over a subregion ofR2 generalizes Wicox’s
approach, which optimizes over all ofR2. There are new sub-
tleties that appear with this approach, since we can seek, for ex-
ample, to make an ambiguity small over some region, which, if
successful, will push the bulk of the function outside the region
where we want it to be small. Obviously, this is not possible if
the region is all ofR2, because of the volume property of the
ambiguity function.

An obvious long range project is an investigation of the rela-
tionship between the choice of an orthonormal basis and the
desired regionG ∈ R2. For now, we consider it worthwhile to
look at what happens with specific examples of the orthonor-
mal basis and regionG.

As noted before, we have recently carried out such a project for
Hermite waveforms andG having circular symmetry, which is
a natural property for theG associated to an Hermite basis. In
the present paper, we will conduct a similar investigation for
the family of prolate spheroidal wave functions. As we will

see, in this case the natural geometry of the regionsG differs
from the circular symmetry of the Hermite case.

To clarify our exposition, we will next give definitions needed
in this work and recall the technique for producing waveforms
that match a specified ambiguity function that was first intro-
duced by Wilcox in [8].

2 Construction of ambiguity surfaces with de-
sired characteristics

The ambiguity function of a waveformu(t), which is assumed
to be either a real or complex valued function of time with unit
energy, is defined by

χu(τ, ν) =

∞∫

−∞
u

(
t− τ

2

)
u

(
t +

τ

2

)
e−j2πνt dt.

The ambiguity function has a tidy set of interlocking properties
(see [1, 2, 9] for details) that strongly constrain the set of two-
dimensional functions that can be ambiguity functions. For
example, the volume under the ambiguity surface,|χ(τ, ν)|,
must equal the square of its maximum achieved at the origin.
Any attempt to push down the ambiguity surface in one place
makes it pop up somewhere else [1].

It is well-known fact that an ideal radar waveform would pro-
duce an ambiguity surface that is zero everywhere except the
origin. Such a function would have ideal range-doppler charac-
teristics. However, no finite energy signal gives rise to that sur-
face [2]. Nevertheless there might be a waveform with ambigu-
ity surface that is an acceptable approximation to the desired
surface. In [8], Wilcox laid down a foundation of the theory
that allows the approximation of an arbitrary square-integrable
function by an ambiguity function overR2. In practice, how-
ever, engineers have a general idea of acceptable shape rather
than the formulas describing it, thus making Wilcox’s algo-
rithm not applicable. In [3, 4], we have demonstrated that the
modification of the Wilcox’s general idea can lead to good re-
sults if we restrict the attention to a suitably specified subsetG
of R2, rather than all ofR2. Below we briefly recall the main
steps of our approach.



Since any waveformu(t) under consideration is a square-
integrable function of time (that isu(t) ∈ L2

R), it can be repre-
sented, by the Riesz-Fischer theorem [6], as

u(t) = lim
N→∞

N∑
m=0

amφm(t), (1)

wheream =< u, φm >L2
R

, lim
N→∞

N∑
m=0

|am|2 = 1, and the

sequence

φ0(t), φ1(t), . . . , φm(t), . . . (2)

constitutes an orthonormal basis inL2
R. In the above formulas

and hereafter, we use the following notations:

< g, h >L2
E

=
∫

E

g h dE, ‖g‖2L2
E

=< g, g >L2
E
,

whereg, h ∈ L2
Rk andE ⊆ Rk for some naturalk.

Assuming that some orthonormal basis (2) is fixed, our fur-
ther consideration will be related to the sequence of classes
VN (N = 0, 1, . . .) defined as follows

DEFINITION. A function u(t) is in class VN (N =
0, 1, . . .) ⇐⇒

u(t) =
N∑

m=0

amφm(t) (3)

such thatam =< u, φm >L2
R

andam ∈ SN , whereSN is the

N -dimensional unit sphere:
N∑

m=0
|am|2 = 1.

Now, we can formulate the problem of findingu ∈ VN whose
ambiguity functionχu(τ, ν) is close toF (τ, ν) as in [3]:

Assume that some orthonormal basis(2) and some region
G ⊆ R2 are fixed. Then, a given functionF ∈ L2

R2 and a
positive integerN , find

arg min
u∈VN

‖F − χu(τ, ν)‖2L2
G

= arg min
u∈VN

(
‖χu(τ, ν)‖2L2

G

− 2<{< F, χu(τ, ν) >L2
G
}
)

+ ‖F‖2L2
G
.

(4)

From a practical point of view, it is desired to construct wave-
forms producing surfaces which are very small everywhere in
some (perhaps, quite large) neighborhood of the origin and
have a peak at that point. This explain the choice ofF (τ, ν) to
be equal to zero in the chosen region and can be thought as an
approximation of the ideal ambiguity surface over the region of
interest. Based on this observation, we have formulated [3, 4]
the following modification of problem (4) which is the subject
of study of this paper:

Find a waveformu(t) ∈ VN such that its ambiguity surface
|χu(τ, ν)| is the best approximation to the ideal ambiguity
function in the mean square sense over some bounded region
G containing the origin, i.e.

arg min
u∈VN

‖χu‖2L2
G

(5)

It should be noted here that the solution(s) of the non-linear
problem (5) significantly depends on the choice of regionG
as well as basis functions{φk(t)}. In [3, 4], we have demon-
strated the performance of our approach for the case whenG is
a circular region surrounding the origin and{φk(t)} are Her-
mite waveforms [5, 8]. In this paper we deal with another or-
thonormal basis which is known in the literature as the most
energy concentrated basis in the space of bandlimited signals.

3 Prolate spheroidal functions

We now, as indicated earlier in this paper, specialize to the case
where the orthonormal basis (2) consists of prolate spheroidal
wave functions. The elegant standard reference for these func-
tions is [7], from which we now recall their definition and a
few basic properties.

The prolate spheroidals arise from an optimization problem:

maximize

∫ T/2

−T/2
u2(t) dt

∫∞
−∞ u2(t) dt

, (6)

for all functions inL2
R whose amplitude spectra vanish for

|ν| > W , i.e. in the space of bandlimited signalsBW .

Solutions (prolate spheroidal wave functions) of (6) satisfy an
integral equation with kernelsin(πWT (t − t′))/(π(t − t′)),
i.e.

∫ 1

−1

sin(πWT (t− t′))
π(t− t′)

ψ(t′) dt′ = λψ(t), |t| > 1 (7)

and also satisfy a second order linear ordinary differential
equation

d

dt
(1− t2)

dψ

dt
+ (χ− (πWT )2t2)ψ = 0. (8)

The symmetric kernel of (7) is positive definite, therefore (7)
has solutions inL2

(−1,1) only for a discrete set of real positive
values ofλ, which we will denoteλ0 ≥ λ1 ≥ λ2 ≥ · · · , with
the corresponding eigenfunctionsψ0(t), ψ1(t), ψ2(t), · · · that
can be chosen to be real and orthogonal on(−1, 1). They are
also complete inL2

(−1,1).

The left hand side of (7) is well defined for allt ∈ R, soψn(t)
can be defined onR and normalized to unit energy there. Then
λn is the fraction of the energy ofψn that lies in the interval
(−1, 1).

Prolate spheroidal wave functions have many remarkable prop-
erties and can provide a very useful set of bandlimited signals
that can be defined as follows [7]:



SupposeW > 0 andT > 0 are given. Define

φn(t) =

√
2
T

ψn

(
2t

T

)
. (9)

Then

• φn(t) ∈ BW ,

•
T/2∫
−T/2

φn(t)φm(t) dt = λnδmn,

•
∞∫
−∞

φn(t)φm(t) dt = δmn,

• theφn(t) are complete inBW for t ∈ R

• theφn(t) are complete inL2
(−T/2,T/2).

• among signals inBW , φn(t) is the most concentrated
signal that is orthogonal toφ0(t), φ1(t), . . . , φn−1(t)

Figure 1 illustratesφ20(t), φ100(t), φ180(t), andφ360(t). The
partial diagram of the ambiguity surface ofφ20(t) is depicted
in Figure 2.
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Figure 1:φn(t) for n = 20, n = 100, n = 180, andn = 360.

4 Numerical results

In what follows, our calculations with prolate spheroidal wave
functions will be carried using Matlab’s Signal Processing
Toolbox programdpss. Next we will consider a few nu-
merical solutions of the minimization problem (5) for some
special cases of regionG. We will start with a circular ring
G = {(τ, ν) : r2 ≤ τ2 + ν2 ≤ R2} surrounding the main lobe
that was considered in [3]. A relevant part of the ambiguity
surface is shown in figure 3. The height of the sidelobe peaks
in the region of interest appears to be less than−19dB which
is by 11dB higher than the sidelobe levels in the same region
for the solution obtained via approximation by Hermite basis.

Figure 2: Partial ambiguity surface ofφ20(t).
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Figure 3: Partial ambiguity surface with suppressed sidelobes
in the circular ring.
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Figure 4: Partial ambiguity surface with suppressed sidelobes
in the circular ring over Hermite basis as in [3]

Figure 4 displays part of the ambiguity surface for Hermite ba-
sis. As can be noted, the width of the main lobe is bigger in
figure 4, since the number (200 fn’s) of the basis functions used
in the case of Hermite waveforms was less than in the case of
prolate shperoidals (400 fn’s).

As it is evident from the figures 3 and 4, the solution of the
minimization problem (5) depends on the choice of the basis
{φn} and the regionG. While the Hermite waveforms seem to
be a good match to regions with circular symmetries, prolate
spheroidal waveforms do not seem to perform well there.

We will next consider the example when the regionG is a rect-
angle[−T, T ]× [−1/T, 1/T ], i.e. a strip along the time cross-

section. Figure 5 illustrates the ambiguity surface in the part of
G that contains the main lobe. The cross-section in logarithmic
scale is depicted in figure 6. All sidelobes are below−40dB.

We should note that the waveforms obtained via the procedure
described in this paper do not have to satisfy the usual desider-
atum of constant amplitude. Simply forcing the obtained wave-
form to have a constant envelope causes a degradation of the
ambiguity profile.

There are various modifications of (5) that address this
issue. For example, one can add a penalty term like

µ
∫ T/2

−T/2
( d

dt (u(t)u(t)))2 dt that will prevent the amplitude of
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Figure 5: Partial ambiguity surface with suppressed sidelobes in the rectangular regionG containing time-delay axis.



u(t) from changing too much. The result of such a modifica-
tion is shown below. Figure 7 illustrates the autocorrelation
function in logarithmic scale. The sidelobes are higher than in
figure 6 by8 dB.

4 Conclusion

In this paper we discuss the construction of waveforms with
optimal ambiguity characteristics in a chosen a priori region
containing the main lobe. The suggested approach is based
on the projection of the signal onto an appropriate orthonor-
mal basis and approximating the signal with desired ambigu-
ity properties by a finite number of basis waveforms. We have
considered prolate spheroidal waveforms as the basis functions
and discussed the problem of minimizing the volume under the
ambiguity surface over two type of regions: a circular ring and
a rectangular strip containing the time-delay axis.
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Figure 6: Autocorrelation function (in dB) for0 < τ < T (top)
and0 < τ < T/16 (bottom)
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Figure 7: Autocorrelation function (in dB) for0 < τ < T
(top) and0 < τ < T/16 (bottom)
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Figure 8: Real (top) and imaginary (bottom) parts of the cor-
responding waveform.


